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ABSTRACT

Zinc is an essential trace element in the human body and its importance in health
and disease is appreciated. It serves as a cofactor in numerous transcription fac-
tors and enzyme systems including zinc-dependent matrix metalloproteinases that
augment autodebridement and keratinocyte migration during wound repair. Zinc
confers resistance to epithelial apoptosis through cytoprotection against reactive
oxygen species and bacterial toxins possibly through antioxidant activity of the
cysteine-rich metallothioneins. Zinc deficiency of hereditary or dietary cause can
lead to pathological changes and delayed wound healing. Oral zinc supplementa-
tion may be beneficial in treating zinc-deficient leg ulcer patients, but its thera-
peutic place in surgical patients needs further clarification. Topical administration
of zinc appears to be superior to oral therapy due to its action in reducing super-
infections and necrotic material via enhanced local defense systems and collagen-
olytic activity, and the sustained release of zinc ions that stimulates
epithelialization of wounds in normozincemic individuals. Zinc oxide in paste
bandages (Unna boot) protects and soothes inflamed peri-ulcer skin. Zinc is
transported through the skin from these formulations, although the systemic ef-
fects seem insignificant.We present here the first comprehensive account of zinc in
wound management in relation to current concepts of wound bed preparation
and the wound-healing cascade. This review article suggests that topical zinc ther-
apy is underappreciated even though clinical evidence emphasizes its importance
in autodebridement, anti-infective action, and promotion of epithelialization.

Zinc is a transitional metallic element known from ancient
times. It is widely distributed in the human environment,
being found in water, air, and virtually all foodstuffs. The
medicinal properties of zinc in the form of calamine were
documented more than 3,000 years ago in the Ebers Papy-
rus and in ancient Ayurvedic manuscripts in early Indian
medicine,1,2 but the observation by Raulin in 1869 that the
mold Aspergillus niger would not grow on a zinc-deficient
medium was fundamental in establishing the importance
of zinc in biological systems. Subsequent research has
shown that zinc is present, albeit in minute concentrations,
in all living plant and animal cells, mainly in the form of
cofactors or structural components in key enzyme systems
in cell replication, protein synthesis, and repair systems
following injury. In 1941, Keilin and Mann3 identified the
first metalloenzyme, carbonic anhydrase, with zinc as an
essential cofactor, but more recently zinc has been identi-
fied in more than 300 different enzymes, of which alcohol
dehydrogenase, alkaline phosphatase, angiotensin-con-
verting enzyme, matrix metalloproteinases (MMPs), re-
verse transcriptase, RNA and DNA polymerases, and
superoxide dismutase are well documented.4,5 In addition
to its role in nucleic acid and protein synthesis, carbohy-

drate metabolism, and oxygen transport, zinc is now
known to be instrumental in stabilizing cellular mem-
branes.6,7 Zinc-finger proteins are a family of more than
2,000 transcription factors that bind specifically to DNA
and activate transcription of growth factors,4,8–10 cytopro-
tective proteins,11 and are regulators of adult hematopoi-
etic stem cells.12 Apart from its importance in protein
complexes, the zinc ion is closely involved in intracellular
signaling and neurotransmission.13,14

Zinc is second only to iron in being the most abundant
trace element in the human body,15 but its nutritional sig-
nificance came to light only in the 1960s following reports

AE Acrodermatitis enteropathica
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of zinc-responsive growth failure in infants in rural Egypt
and Iran.16,17

Because of new clinical evidence presented at the World
Union of Wound Healing Societies’ meeting in Paris 2004,
it is timely to re-evaluate the potential benefits offered by
zinc therapy in wound management. Although numerous
clinical trials claim to show the benefits of using oral or
topical zinc therapy in wound management, variations in
treatment regimen and zinc formulations used have ob-
scured the true efficacy of the protocols. In keeping with
the early studies on supplementary zinc therapy in pilon-
idal sinus management,18 evidence is now available to
show that not only is zinc beneficial in the healing profile
but that it provides an effective level of anti-infective ac-
tion.19 Furthermore, a young boy with Hirschsprung’s dis-
ease with symptoms of zinc deficiency successfully treated
with zinc following gastrointestinal surgery provides fur-
ther irrefutable evidence for the value of zinc in wound
healing.20

This review summarizes the knowledge on regulation of
zinc homeostasis, nutritional role, and metabolism of the
trace element, zinc deficiency and diagnosis, and zinc in
skin physiology. We also provide an extensive summary of
experimental and clinical studies on the physiological and
pharmacological roles of zinc in the wound-healing pro-
cess. The review is concluded by a brief description of
commercially available zinc preparations used in wound
management and the clinical relevance of zinc absorbed
from these products.

CELLULAR ZINC HOMEOSTASIS

Advances in molecular genetics and zinc-specific fluores-
cent probes have unraveled many of the mechanisms re-
sponsible for zinc uptake, intracellular distribution, and
elimination.13 Within cells, 30–40% of the zinc is bound to
proteins in the nucleus, 50% is located in the cytoplasm,
and the remainder in plasma membranes.5

Metallothioneins (MTs) complex up to 20% of intracel-
lular zinc. The implications of MT induction and zinc me-
tabolism in health and disease have been reviewed.21–23

These ubiquitous, cysteine-rich low-molecular-weight pro-
teins regulate the intracellular supply of zinc to enzymes,
gene-regulatory molecules and zinc depots, and protect
cells from deleterious effects of exposure to elevated levels
of zinc. One MT molecule can bind seven zinc ions.

The ZIP family of membranous transporter proteins is
mainly involved in cellular zinc uptake, whereas the ZnT
family mediates zinc efflux.21,24 Energy sources for the zinc
channels are elusive, and symport as well as antiport mech-
anisms have been proposed.25 Members of the ZIP family
consist of 220–650 amino-acyl residues with eight putative
membrane-spanning domains. ZIP-1 is the major uptake
system in human tissues26 and is expressed in the small in-
testine, epidermis, and keratinocytes.27 The ZnT proteins
comprise six putative transmembrane domains with a his-
tidine-rich loop.24 ZnT-1 is found in plasma membranes
and catalyzes efflux from the cytoplasm into the extracel-
lular medium preventing excessive intracellular zinc con-
centrations.21,24 ZnT-2 translocates zinc ions to an acidic
endosomal compartment, another mechanism for cyto-
protection.21,24 ZnT-4 is constitutively expressed in the
mammary gland epithelium where it controls secretion of

zinc into breast milk.28 Mutations of the ZnT-4 gene are
responsible for the lethal milk mouse, and pups fed the
maternal zinc-deficient milk die before weaning.

Expression of MTs and zinc transporters is transcrip-
tionally regulated by metal-responsive transcription fac-
tor-1 that senses zinc levels.29

NUTRITIONAL ROLE AND
METABOLISM OF ZINC

Zinc was identified as an essential micronutrient by the
Wisconsin group of biochemists in 1934. The nutritional
value of zinc was widely researched by McCance and Wid-
dowson in the 1940s30 but the true clinical significance of
zinc was not appreciated until much later.31 The body re-
quirements for zinc in humans are normally satisfied by a
well-balanced diet leading to an average daily intake of 10–
15mg per day in concordance with the recommended daily
allowance for zinc in healthy adults of 8–15mg per
day.32,33 Diets rich in protein are usually high in zinc,32

whereas vegetable diets containing high plant fiber are low
in absorbable zinc.1

Exogenous zinc is mainly absorbed in the duodenum
and proximal jejunum within 3 hours after meal in-
take.34,35 Zinc first binds to the apical membrane of the
enterocyte, is transported into the cell, and then secreted
into the blood or back into the intestine as endogenous
zinc.36 Initial zinc absorption is inversely proportional to
mucosal MT concentrations but as MT sequesters zinc,
further uptake is suppressed.37 The quantity of absorbed
zinc depends on dietary factors.35 Intestinal absorption
from aqueous zinc solutions may be 80% before food
intake but only 5–40% afterward through the action of
metal chelators, predominantly phytic acid (inositol hexa-
phosphate) in seeds, grains, and legumes, which precipitate
free zinc ions as insoluble complexes.38 Other metal ions
like iron may compete with zinc for binding sites and in-
hibit zinc bioavailability.38 Circulating zinc increases rap-
idly during the first hour and then declines as the metal is
transferred to tissues.

The maintenance of zinc homeostasis relies on reab-
sorption of endogenous zinc mainly from pancreatic secre-
tion into the distal small bowel, a process that responds to
changes in the nutritional zinc status of the individual.35,39

The liver is a key regulator of zinc homeostasis and con-
trols indirectly excretion of endogenous zinc, which occurs
mainly via the gastrointestinal route.40 Under normal
physiological conditions, renal excretion accounts for 10–
20% of gastrointestinal excretion of zinc, whereas zinc
losses through desquamation and perspiration are normal-
ly insignificant.35

ZINC DEFICIENCYAND DIAGNOSIS

The total zinc in the human body is estimated to be 0.8–
3.0 g.15 Symptoms and signs of zinc deficiency include
ataxia, depression, impaired taste, anorexia, diarrhea, ec-
zematous dermatitis, alopecia, mouth ulcers, and delayed
wound healing.16 True zinc-deficient states are reported in
relation to sickle cell anemia, chronic malnutrition, total
parenteral nutrition (TPN), malabsorption disorders,
chronic alcoholism, chronic liver disease, gut fistulae,
Crohn’s disease, and ulcerative colitis.1,41,42 In each case,
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zinc supplementation has led to complete remission of the
symptoms. Zinc supplements may be effective in prevent-
ing or ameliorating types 1 and 2 diabetes.43

On a molecular level, ZIP-4 is rapidly induced on mi-
crovilli of enterocytes during zinc deprivation to compen-
sate for inadequate zinc intake.36,44 Furthermore,
proinflammatory cytokines induce MTs45 that suppress
gastrointestinal zinc uptake and the zinc transporter pro-
tein ZnT-1 that increases hyperzincuria, and thus contrib-
ute to a negative zinc balance.

The diagnosis of zinc deficiency in the human body is
complicated by the low concentrations present and by
controversy and lack of sensitive indices.46 In serum,
about 60% of zinc is bound to albumin, 30% to a2-ma-
croglobulin, and 10% to various other ligands.47 Normal
serum zinc is considered to be in the range 10–18 mmol/L,
with higher levels in men than in women33 but variations in
published figures may be due to the accuracy of analytical
methods used and circadian rhythms of zinc levels.48 A
serum zinc level below 9mmol/L is biochemically defined
as zinc deficiency49 but malignancies, hyperactivity,50

stress, trauma, active tuberculosis, skin diseases, chronic
wounds,51–53 chronic renal insufficiency, uremia,54 and
nephrotic syndrome are predictable causes of hypozinc-
emia. Lower than normal serum zinc in pregnant women is
presumably a result of transplacental transfer of zinc from
mother to fetus.55

According to Halsted and Smith,56 abnormally low
serum zinc merely suggests a state of zinc deficiency, and
only clear-cut clinical responses to zinc therapy under con-
trolled conditions constitute definitive evidence. Possibly,
the zinc concentration in white blood cells reflects zinc sta-
tus more accurately than plasma zinc level.46 Whole-body
counting techniques should provide an accurate picture of
zinc status.38,57

HEREDITARY ZINC DISORDERS

Acrodermatitis enteropathica (AE) occurs as a rare inher-
ited disorder transmitted as an autosomal recessive trait.58

AE is caused by impaired zinc uptake in the small intes-
tine, manifests early in childhood, and is associated with
low serum zinc levels, impaired bowel function, hypogo-
nadism and characteristic skin lesions of erythema, vesic-
ulo-bullous dermatitis, alopecia, stunted growth,
decreased resistance to infections, and impaired wound
healing.58,59 Histopathological features of the skin include
degenerating keratinocytes, parakeratosis, thick chroma-
tin aggregates, and increased mitosis.60 AE is frequently
fatal unless treated with oral zinc sulfate.58,59 The etiology
has been ascribed to mutations of the ZIP-4 gene, which
encodes a zinc transporter protein.44,61

The secondary laminopathies are due to mutations in a
gene that encodes for a zinc metalloproteinase involved in
processing of the intermediate filament prelamin A into
mature lamin A and cause mandibuloacral dysplasia and
restrictive dermopathy. Skin fibroblasts from these pa-
tients show abnormal nuclear morphology.62

ZINC IN SKIN PHYSIOLOGY

Zinc is located intracellularly and in extracellular matrix
(ECM) in epidermal and dermal tissues in the form of pro-

tein complexes where zinc acts as a stabilizer of cell mem-
branes and an essential cofactor, and satisfies a central role
in mitosis, migration, and maturation.

The zinc concentration in the epidermis (50–70mg/g dry
weight) is higher than in the dermis (10–5mg/g dry weight)
in human skin, perhaps reflecting the activity of zinc-de-
pendent RNA and DNA polymerases in mitotically active
basal cells.63–66

Immunohistochemical and in situ hybridization local-
ization studies on normal skin indicate high levels of MTs
in the basal epidermis with reduced concentrations in post-
mitotic keratinocytes, reticuloendothelial cells, and fibro-
blasts.22,67–69 MT is associated with increased tissue
concentrations of zinc22 and the zinc content of the skin is
significantly lower in theMT-null than in wild-type mice.67

Furthermore, the epidermis failed to exhibit hyperplasia in
MT-null mouse skin challenged with stimulators of cell
proliferation comparable to that in animals replete with
mRNA for MT genes.67

There is a critical balance between zinc and calcium in
basal cell mitosis and postmitotic functional maturation
involving keratohyalin synthesis and keratinization in nor-
mal skin.70,71 An inverse relationship is seen in the epider-
mis between the zinc concentration and the state of
maturation and keratinization of postmitotic cells. Declin-
ing zinc gradients across the epidermis are the reverse of
calcium gradients that increase from the basal layer to
maximal concentrations in the granular cells.70,72–74 Cal-
cium-binding proteins like calmodulin hold key roles. Heng
et al.75 demonstrated reciprocity between tissue calmodulin
and cAMP levels in epidermal cells, and showed that cal-
modulin levels decline significantly in the presence of excess
zinc. Zinc also modulates the activity of calcium/calmodu-
lin-dependent protein kinase II dose dependently.76

The relative importance of zinc and calcium in cell pro-
liferation and maturation is further illustrated in compar-
ative studies of keratinizing epithelia.77 In thin hairy skin
where mitosis is inversely proportional to the hair cover,
zinc and calcium levels are appreciably lower than in pres-
sure keratinization on the sole of the foot where the robust
epidermis with one to three basal layers is associated with a
protracted keratinization and thick compacted stratum
corneum. Higher levels of zinc in the sensory epithelia of
the nasal mucosa and tongue are not only consistent with
high mitotic activity, protracted zones of keratinization,
and high levels of protein-bound phospholipids, but reflect
the importance of zinc in taste and smell perception.78

ZINC IN WOUND-HEALING PHYSIOLOGY

Many of the biochemical and molecular events in wound
repair can be expedited by addition of supplementary zinc
ion through up-regulation of MTs22 and zinc metalloen-
zymes.79 Furthermore, any defect in the expression of zinc-
finger transcription factors in mRNA coding of growth
factors is consistent with impaired wound healing.10,11

The quantitative and qualitative distribution of zinc in
skin wounds is determined by atomic absorption spec-
trometry and immunohistochemical techniques for dem-
onstrating zinc-binding proteins like MTs.73 Interleukin-1
(IL-1) is instrumental in modulating zinc metabolism
through the differential regulation of MT genes.45 This
mechanismmay in part explain the marked increase in zinc
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in the early inflammatory phase of experimental
wounds.68,73,80 In the rat wound model, zinc levels in the
wound margin increased by 15–20% within 24 hours, in-
creasing to 30% at the time of maximal granulation tissue
formation and epidermal proliferation.73 This early in-
crease was associated with high MT in keratinocytes at the
wound margin, macrophages, and dermal fibroblasts,
whereas later, MT deposits were associated with prolifer-
ating populations of epidermal basal cells. The decline in
zinc in the later stages of healing (10–21 days) was consist-
ent with reduced mitotic activity and scar matur-
ation.73,80,81

Evidence for the functional role of zinc in repair systems
is provided by demonstration of zinc metalloenzymes like
alkaline phosphatase, RNA and DNA polymerases, and
MMPs.82 Alkaline phosphatase is a sensitive marker for
fine dermal blood vessels and early stages of angiogenesis
associated with increased inflammatory activity and con-
nective tissue proliferation.83 DNA polymerases serve as
accurate markers for cell proliferation.84

MMPs

MMPs belong to the metzincin clan of metalloendopepti-
dases.85 Twenty-five structurally similar human MMPs
have been identified,86 having the following common char-
acteristics:

� an N-terminal hydrophobic domain (signal peptide);
� a propeptide domain; and
� a catalytic zinc-binding domain.

The catalytic domain of MMPs comprises a cleft con-
taining one catalytic tightly bound Zn21, to which the sub-
strate initially binds before cleavage, and one additional
structural Zn21.85,87

As a group, MMPs are capable of degrading essentially
all components of the ECM and exhibit diverse proteolytic
specificities consistent with their wide range of protein and
glycoprotein substrates including cytokines, cytokine re-
ceptors, adhesion molecules, and latent MMPs.86 They are
synthesized variously by all cell types in the wound, not-
ably keratinocytes at the wound margin, macrophages, fi-
broblasts, and endothelial cells under the influence of
soluble mediators and cell–ECM contacts.86 MMPs are
synthesized as inactive zymogens with a cysteine residue
forming a predomain masking the catalytic site. Disrup-
tion of this predomain exposes the zinc ion for catalytic
binding to a substrate.88

MMPs of particular relevance in wound healing include
collagenases (MMP-1, MMP-8, MMP-13), stromelysins
(MMP-3, MMP-10), and gelatinase A (MMP-2) and gela-
tinase B (MMP-9).79,89–94 The collagenases cleave native
triple helical collagen, whereas MMP-2 and MMP-9 de-
grade fragmented interstitial and denatured collagens,
basement membrane type-IV collagens, and gelatin.
MMP-3 and MMP-10 have a wide range of substrates in
the wound bed.89,93

Characteristically, MMPs are up-regulated following
injury.95 Much attention has focused upon the intrinsic
mechanisms for up-regulation of these endogenous zinc-
dependent enzymes, their proteolytic role in wound de-
bridement and action in modulating cell migration, and

reconstitution of the ECM.79 Current views on wound
healing focus upon wound bed preparation as an obliga-
tory first stage in the management of chronic wounds.96 In
pig models, wound repair was shown to be an expression
of the debriding efficacy of the collagenases.97 Adminis-
tration of synthetic MMP inhibitors that block the early
proteolytic and collagenolytic action of MMPs impairs ke-
ratinocyte migration and wound contraction during
wound healing.98 Increased MMP expression in scars has
been observed at least 1.5 years postwounding90 but their
precise roles in excessive scarring or scarless wound heal-
ing need further clarification.99

In situ hybridization methods have proved useful in
identifying sites of mRNA coding for MMPs and mecha-
nisms of up-regulation.91,100 Elevated levels of MMP-1
mRNA were demonstrated mainly in 12–24-hour human
wound fibroblasts100 and in migrating epidermal tongues
as part of the acute phase in wound healing.91 Thus,
MMP-1 would seem to have a primary role in ‘‘initiating’’
tissue repair100 and in epithelialization,94 but then is shut
off although keratinocytes up-regulate MMP-1 expression
in fibroblasts.101 Wound healing is severely impaired in
collagenase-resistant mice,102 but MMP-13 knockout ani-
mals did not differ in their efficiency of epithelialization,
inflammatory response, granulation tissue formation, an-
giogenesis, and restoration of basement membrane.103

This may be explained by overlapping functions of the col-
lagenases and supports the concept of redundant activity
among theMMPs.103,104 IntracellularMMP-1 also confers
resistance to apoptosis.105 The membrane-associated
MMP-14 appears to be involved in keratinocyte migration
and survival.104 MMP-2 is expressed in uninjured skin in-
cluding the epidermis and stromal cells of the dermis,91

and MMP-2 mRNA persists in fibroblasts and endothelial
cells throughout the healing cascade, and appears to be in-
volved primarily in the remodeling of scar ECM.90 In con-
trast, MMP-9 is expressed in advancing epithelium only in
wound sites where it cleaves bonds between basal cells and
basement membranes while acting as a local organizer
protein.91,106 The persistence of inflammatory cell-associ-
ated MMP-9 is related to poor tissue repair.91,107 Overex-
pression of MMP-9 in chronic human wounds89,91 and in
an ischemic rat wound model was associated with high
levels of proinflammatory cytokines also being a cause of
prolonged proteolysis and delayed healing.108

Stromelysins are closely linked to wound contraction as
wounds in MMP-3-deficient mice exhibited a normal-
looking epithelialization but contraction was impaired.109

In contrast, MMP-10 expressed in keratinocytes of the ep-
ithelial tongue of skin wounds93,110 appears to act at the
cytoplasmic level and recombinant MMP-10 increased mi-
gration of cultured human epidermal keratinocytes.93 On
the other hand, mice overexpressingMMP-10 showed nor-
mal wound-repair patterns but keratinocytes at the leading
edge exhibited reduced ECM deposition with aberrant
laminin-5 and b1-integrin expression.93

Integrins

Keratinization and keratinocyte migration are modulated
by zinc through the expression of integrins a2b1, a3b1,
a6b4, and avb5.111 In intact skin, these integrins are ex-
pressed mainly in the basal layer and are responsible for
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intercellular and cell-basement membrane adhesion, but
they become altered in response to inflammation or tissue
injury. Each integrin is expressed during epithelialization
in skin wounds but their expression in cultured keratino-
cytes is modulated by zinc. Supplementary zinc promotes
induction of a2, a3, av, and a6 integrin subunits that in-
fluence keratinocyte motility in the healing phase.111

Experimental studies of zinc in wound healing

Many of the initial studies conducted in the 1950s and
1960s, purporting to show the intrinsic role of zinc and
benefits of supplementary zinc in acute wound healing,
were inconclusive.80 Surprisingly, the researchers used gal-
vanized water bottles for their rats and did not allow for
this inadvertently added zinc, which advanced wound re-
pair by 30%.

More recent studies have shown unequivocally that
topical zinc therapy reduces wound debris and advances
epithelialization in surgical wounds in the rat.112,113 Ob-
servations that topical zinc led to reduction of wound
debris and necrotic material in wounds of different
etiologies112,114,115 led Ågren to investigate the action of
zinc-dependent MMPs in cultured necrotic tissue from
porcine wounds.116 Zinc oxide advanced the enzymatic
breakdown of collagen fragments in vitro through MMPs,
which, as discussed above, exhibit substrate specificity for
most ECMmolecules.86,116 Locally applied zinc oxide also
enhanced the repair of ulcerated skin.117 Conversely, in-
hibition of MMPs dramatically delays wound healing.98

Strong support is given in recent experimental studies to
show that added zinc aids surgical wound repair113,118 and
that induced or hereditary zinc deficiency is detrimental.
Rats fed a zinc-deficient diet have poor wound heal-
ing,81,118 although skin zinc stores are not depleted unless
both zinc and proteins are severely restricted.119 The mech-
anisms responsible for impaired biomechanical strength of
and collagen metabolism in incisional wounds of zinc-de-
ficient rats are unclear.120 One study reported a normal
rate of collagen synthesis in wounds of zinc-deficient
rats.121 McClain et al.122 suggested that cross-linking of
collagen was compromised. Yet another possibility is the
involvement of zinc in metalloproteinases that cleave pro-
peptides of procollagen molecules,85,123 a step that deter-
mines the rate of collagen synthesis.124 Interestingly, when
supplemental zinc is given to zinc-deficient rats, wound
zinc increases and healing progresses as normal, but no
difference is seen in the healing pattern in normozincemic
animals given extra systemic zinc.118,119 When applied top-
ically for 12 days, zinc oxide was beneficial in the treatment
of full-thickness excisional wounds, regardless of the nu-
tritional status of the rats.125

Experiments have been carried out in nutritionally bal-
anced domestic pigs to substantiate the therapeutic value
of zinc oxide supplement in wound healing and its putative
mechanisms of action.126 We could demonstrate 30% pro-
motion of healing by topical zinc oxide in both partial-
thickness and full-thickness wounds.126–128 Whereas sup-
plementary zinc oxide advanced epithelialization signifi-
cantly in these experiments, topical zinc sulfate offered no
benefits on wound healing (Figure 1).127 On the contrary,
high levels of zinc sulfate (>15mmol/L) severely delayed

epithelialization and increased dermal inflammatory cell
infiltration. Zinc oxide and the lower zinc sulfate concen-
trations possessed a mild anti-inflammatory effect.127

These results indicate that when zinc is added as zinc ox-
ide to wounds, it may exert a pharmacological action on
wound healing at the stimulatory level of recombinant
growth factors.129,130 Zinc oxide is advantageous over
readily water-soluble zinc compounds e.g., zinc sulfate be-
cause it provides sustained release of bioavailable zinc to
the wound at noncytotoxic levels.131–133 Zinc oxide and
zinc ion solutions of 500mmol/L did not elicit cytotoxicity
in cultured human dermal fibroblasts,132 although in-
creased intracellular zinc levels were accompanied by ele-
vated intracellular copper levels.134

There are several possible modes of action to explain
promotion of epithelialization with supplementary zinc
treatment. Increased nuclear MT in wound marginal ke-
ratinocytes and in mitotically active cells of the basal epi-
dermis is a positive indication of the involvement of zinc in
DNA polymerases in the burst of mitosis that precedes ep-
ithelialization.67,68 Zinc accumulates in proliferating as
opposed to stationary epidermal keratinocytes68 and top-
ical zinc oxide increased keratinocyte proliferation by
about 30% in adult murine wounds.135 Zinc ions mimic
the action of growth factors by enhancing intracellular mi-
togenic signaling pathways,136,137 and zinc oxide is capable
of up-regulating endogenous growth factors, notably insu-
lin-like growth factor-I,128,138 which may increase epithe-
lialization.126 In support of these mechanisms is the finding
of Mertz et al.,139 who reported faster epithelialization
with a 0.003% zinc/iron solution compared with platelet-
derived growth factor-BB in partial-thickness porcine
wounds. In addition, an antiapoptotic effect in the epithe-
lium has been ascribed to zinc,24,140,141 presumably
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through its cytoprotective properties against oxidative
stress and bacterial toxins.24,142,143 Modulation of integrin
expression111 and activation of MMPs98,116 may contrib-
ute to enhanced keratinocyte migration with supplemen-
tary zinc.

Zinc in gastrointestinal wound healing has been studied
in animal models. Vaxman et al.144 observed a concomi-
tant decreased serum zinc level and increased zinc concen-
tration in the large bowel following laparotomy and
construction of colonic anastomoses in rabbits. In dogs, it
was found that animals given TPN with a zinc supplement
for 2 weeks accumulated almost twice the amount of col-
lagen in 7-day-old colon anastomotic wounds compared
with the zinc-free TPN group.145 Interestingly, serum zinc
correlated significantly with collagen deposition in the
anastomotic wounds.145 This indicates a very central
physiological role of zinc in collagen accumulation in tis-
sue repair, which can be stimulated by zinc treatment. In
another experimental study, zinc given intraperitoneally
immediately after operation and daily for 4 days (2mg/kg/
day) increased the bursting pressure of colon anastomoses
on the seventh postoperative day in both normal rabbits
and rabbits treated with a chemotherapeutic agent.146 In-
creased fibroblast infiltration and enhanced epithelializa-
tion were observed in the zinc-treated rabbits.146 We were
unable to reproduce these beneficial effects of intraperito-
neal zinc sulfate on colon anastomosis repair in a rat mod-
el either on postoperative day 3 or 7.

Gastric ulcers in zinc-deficient rats heal slower than in
normal controls147 and zinc compounds can improve mu-
cosal regeneration in zinc-sufficient normal and diabetic
rats.148,149

CLINICAL VALIDATION OF ZINC IN
WOUND MANAGEMENT

Influence of surgery on zinc metabolism and systemic

use of zinc in surgical patients

Surgical trauma and infection are associated with redistri-
bution of zinc from the circulation to the liver and possibly
other tissues.150,151 This acute-phase response as a protec-
tion against host-accumulated damage or infection is most
likely due to induction of MTs because MT-null mice do
not react with hypozincemia or hepatic zinc sequestration
following lipopolysaccharide administration.152

Zorrilla et al.153 found that impaired wound healing,
defined by clinical signs of infection and dehiscence, was
significantly related to low levels of zinc in serum obtained
from 80 (36 men) patients before they had total hip re-
placement. We were unable to correlate serum zinc with
time to complete healing of open pilonidal wounds in 64
patients (53 men).19 Zorilla’s patients were 66 years old153

compared with our 25-year-old patients.19 In a double-
blind trial, Faure et al.154 infused zinc (30mg/day) pre-
and postoperatively for 3 days in 30 patients subjected to
major vascular reconstructive surgery. This zinc supple-
ment was sufficient to prevent the postoperative serum
zinc decline. Furthermore, significantly fewer wound-heal-
ing complications occurred in zinc-treated patients com-
pared with placebo-treated patients.154 Surgical patients
on TPN without trace element supplements are prone to

developing symptomatic zinc deficiency,155 which is re-
lieved by zinc administration.156 An increased febrile re-
sponse in patients with pancreatitis and catheter sepsis on
TPNwith 30mg elemental zinc supplementation for 3 days
has been reported.157

Effect of systemic zinc supplementation and

chronic wound healing

The majority of studies designed to determine the efficacy
of systemic zinc in wound healing have been conducted in
patients with chronic wounds. Chronic leg ulcer patients
often have abnormal zinc metabolism57 and low serum
zinc levels.52,53 A recent appraisal concluded that no trial
has shown a statistically significant benefit for zinc sulfate
in leg ulcer therapy158 unless there is evidence of low serum
zinc.158 The adverse effects of oral zinc sulfate, usually giv-
en as capsules or tablets containing 220mg thrice daily,
include abdominal pain, dyspepsia, nausea, vomiting, and
diarrhea.159

No correlation was observed between the concentra-
tions of zinc in serum and skin in patients with leg
ulcers,160 suggesting that zinc deficiency condition might
exist in spite of normal serum zinc values. In addition to
serum zinc measurements, complementary assessment of a
patient’s dietary intake may provide a useful guide to their
zinc status and need for supplementation. Wissing et al.161

and Raffoul et al.52 followed cohorts of chronic wound
patients and concluded that the patients’ zinc intake was in
general poor.

Effect of topical zinc on normal and impaired

wound healing

Zinc is more commonly used topically, although it is un-
clear when zinc was first used in the management of skin
wounds.2,162 Pharmacopoeias list zinc sulfate as a local as-
tringent and antiseptic, zinc chloride as an escharotic, and
insoluble zinc oxide and calamine as mild antiseptics, as-
tringents, and protective agents, with particular value in
treating inflammatory skin conditions and superficial
wounds.163

The value of topical zinc application in wound care is
underpinned by early observations by Henzel et al.64 They
reported that in patients following major surgery, a pro-
nounced decline in blood and tissue zinc, together with in-
creased zincuria and loss of zinc in wound exudates/debris
resulted, in up to a 50% reduction in zinc in the granula-
tion tissue and wound margin, creating a local zinc deficit
in patients with poor wound healing.

We have investigated the effects of zinc oxide applied
topically to chronic and acute wounds in randomized-con-
trolled trials.19,114,164–166 In a double-blind, placebo-con-
trolled trial, zinc oxide promoted healing of leg ulcers.166

Furthermore, zinc oxide was as effective as an enzymatic
topical debriding agent in the treatment of pressure
ulcers.164 In diabetic foot ulcers, a zinc oxide-medicated
occlusive dressing was significantly more effective in de-
bridement compared with autodebridment using a stand-
ard hydrocolloid occlusive dressing.114 Moore167 strongly
advocates topical zinc oxide treatment for diabetic foot
ulcers. A debriding effect of zinc oxide has also been
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observed in burn wounds.115 Because hypozincemia51–
53,114 and delayed wound healing are common in these pa-
tients, it cannot be concluded from these studies that zinc
is also effective in patients with normal zinc stores. In a
recently completed double-blind, placebo-controlled trial,
topical zinc oxide did not significantly decrease time to
closure of open pilonidal wounds.19 The less obvious effect
of zinc in this wound type may be explained by the obser-
vations that zinc stimulates epithelialization more than
wound contraction in experimental wounds.126 In support
of this, results from smaller clinical trials indicate the bene-
ficial effects of topical zinc on human wounds healing pre-
dominantly by epithelialization such as suction-blister
wounds,168 superficial (1mm deep) small incisions,169 and
split-thickness skin graft donor sites.170 Taken together,
larger-scale trials are urgently required to verify the trend
of accelerated wound healing with topical zinc oxide in
acute human wounds.

Intriguingly, topical zinc reduced oral antibiotic con-
sumption significantly compared with placebo treat-
ment.19 Furthermore, Staphylococcus aureus was cultured
significantly less frequently from zinc oxide-treated than
from placebo-treated wounds,19 substantiating its mild an-
ecdotal antiseptic property.163

Zinc is an antimicrobial and anti-inflammatory agent

Zinc is an essential micronutrient also for prokaryotic or-
ganisms. Zinc homeostasis in prokaryotes is regulated
through a number of specific and nonspecific membrane-
bound uptake and efflux pumps.171 Intracellular free zinc
levels are maintained at subtoxic levels through MTs un-
related by evolution to the MT in eukaryotic cells.172

At superphysiological levels, zinc inhibits the growth of
several bacterial species. Gram-positive organisms appear
to be more sensitive to zinc than Gram-negative bacteria.
For example, minimum inhibitory concentrations (MICs)
of Zn21 on aerobic bacteria isolated from human wound
infections were determined in one study.173 Four suscepti-
bility grades emerged from the study:

1. Streptococcus groups A, C, and G (MICs �0.5–
2mmol/L);

2. Staphylococcus aureus, Streptococcus group B (MICs
2–4mmol/L);

3. Escherichia coli, Klebsiella sp., Enterobacter sp. (MICs
4–8mmol/L); and

4. Proteus sp., Pseudomonas aeruginosa, Enterococcus sp.
(MICs 8–32mmol/L).

Similar sensitivity patterns were observed for clinical
isolates from burn wounds.174 Zinc oxide also showed
antibacterial activity against aerobic and anaerobic endo-
dontal pathogens.175,176.

Zinc oxide inhibits attachment177 and growth of S. au-
reus in vitro.178,179 In vivo, Sunzel et al.180 inoculated sub-
cutaneous steel-wire cages implanted in guinea-pigs and
rabbits with S. aureus (strain 209 P) and demonstrated sig-
nificantly reduced growth in the presence of zinc oxide.

There is currently a trend in the increased use of anti-
microbial agents like silver and iodine.181,182 The effective-
ness of antimicrobial therapies depends on host defense
mechanisms and virulence factors.183 Zinc concentrates

naturally in tissues showing high cell turnover, including
the bone marrow and thymus, and is considered to be an
important regulator for macrophages and polymorphonu-
clear leukocytes.184,185 Zinc is also capable of inhibiting
nitric oxide formation186 and prevents sulfhydryl groups
from oxidation, other possible mechanisms of the anti-in-
flammatory activity of zinc.187 The functionality of zinc in
antimicrobial peptides needs further elucidation.188 Bio-
film formation in wounds is an important determinant for
the effectiveness of antimicrobial therapy.183 Although
zinc at 1mmol/L depressed the growth of E. coli, the
movement of zinc into deeper layers of biofilms was limit-
ed.189 The emergence of methicillin-resistant S. aureus
(MRSA) is a growing problem in wound care. Ugur et
al.190 reported 13.6% MRSA resistance to zinc. They de-
fined resistance as MRSA strains surviving zinc concen-
trations above 1mmol/L. Resistance mechanisms involve
the induction of efflux pumps that lowers intracellular
Zn21 concentrations.191

Thus, as zinc supplements possess mild antimicrobial
properties against common wound flora173 and aid a host’s
defense system against infections,178 consideration might
usefully be given to zinc products in wound care.

ZINC PRODUCTS

Zinc-containing products available for topical application
in wound management include paste bandages, stockings,
and occlusive adhesive dressings, alginates, and zinc-saline
dressings (Table 1).

Zinc paste bandages or Unna boot composed of open-
wove cotton gauze impregnated with zinc oxide paste re-
main as standard treatments for leg ulcers.192 Unna boot
provides a protective barrier199 and anti-inflammatory
benefit to varicose eczema.200 Zinc itself may occasionally
cause burning, stinging, itching, and tingling when applied
to inflamed tissues. Hypersensitivity to topical zinc oxide is
absent or rare201 and most commonly associated with the
excipients of the dressing.165,193 Preservatives, especially
parabens but also cetearyl alcohol, can sensitize the skin193

and have been omitted in newer and sterile bandages.
Zinc paste bandages must be applied loosely and lightly.

In dressing leg ulcers, a bandage should be applied from
the base of the toes to the tibial tuberosities, ensuring that
the heel is completely enclosed. The bandage must be
pleated at each turn to accommodate potential edema. Al-
ternatively, the bandage may be cut into strips and overlap
each layer by 50%. The bandage must be covered either by
a retention bandage such as crêpe or a compression ban-
dage if the arterial circulation is adequate. Paste bandages
can be left in place for up to a week for treatment of ulcers
and up to 2 weeks if treating the skin alone.

A three-armed randomized clinical trial involving 113
venous leg ulcer patients compared a zinc paste bandage
with a zinc oxide-medicated stocking and a calcium algin-
ate dressing.195 The zinc products and alginate dressing
were applied in conjunction with compression bandages.
The ulcers healed significantly faster in patients treated
with the zinc paste bandage compared with the zinc stock-
ing and the alginate dressing. The authors concluded that
the improved healing rates were attributable to improved
venous blood return during exercise through the extra
compression delivered by the nonelastic paste bandage
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and that zinc oxide did not account for the healing differ-
ences. This conclusion may be incorrect as the vehicle may
have masked any beneficial effect of zinc oxide in the
stocking.132

Indications for zinc-containing ointments, creams, and
lotions in dermatotherapy were recently reviewed by
Schwartz et al.202

ABSORPTION OF ZINC THROUGH
THE SKIN AND FROM WOUNDS

Percutaneous absorption of zinc is greatly influenced by
the integrity of the natural skin barrier function afforded
by the stratum coreum.203,204 Regulatory processes are not
known but presumably MTs, present in basal epidermal
cells and hair papillae,69 have a role in percutaneous zinc
uptake. MTs are induced locally and distally by topical
application of zinc.205–207 Topically applied glucocorti-
coids also induce MTs.205 It is unclear presently whether
transporter genes of the ZIP or ZnT classes are involved in
percutaneous absorption.

Zinc absorption by the skin is influenced by the amphi-
philia of the vehicle and physicochemical properties
(solubility, pH, molecular weight, partition coefficient)

and concentration of the zinc compounds in the topical
formulations.208–210 Although penetration of the zinc ion
through intact skin in normozincemic humans is low from
topical zinc oxide,211 dermal absorption was demonstrated
with a zinc oxide cream (Triple Care, Smith & Nephew,
Hull, UK) applied for 3 hours to the forearm arm of
healthy volunteers.212 Zinc oxide hydrolyzes in the pres-
ence of skin surface acidic moisture to release biologically
active Zn2163; this readily reacts with sulfhydryl groups in
epidermal keratin. Ågren63 showed that zinc oxide in a
rosin-based occlusive adhesive dressing applied to normal
forearm human skin led to an initial accumulation of zinc
in the stratum corneum of the epidermis and penetrated to
deeper levels after longer exposure. Increased zinc levels
were measured in interstitial fluid and dermis within 48
hours. No zinc penetration was observed when zinc oxide
was incorporated into an occlusive hydrocolloid adhesive
dressing presumably due to lack of formation of lipophilic
zinc resinates.213 Gamer et al.214 also failed to demonstrate
zinc penetration from microfine zinc oxide applied to in-
tact porcine skin in vitro. Increased zinc deposition is seen
in epidermal keratin with acidic preparations like zinc
chloride under occlusive conditions.141,208,215 The greater
acidity favors ionization and the increased state of hydra-
tion enhances percutaneous absorption.216

Table 1. Nonexhaustive list of commercial zinc-containing wound care products

Product Manufacturer Zinc content and other ingredients Documentation

Zinc paste bandages (Unna boot) 192

Calabands2, 193 Mölnlycke Health Care,

Göteborg, Sweden

Zinc oxide (9.25%)

Calamine (5.75%)

Phenosept

Gelocasts Smith & Nephew,

Hull, UK

Zinc oxide (10%)

Steripastes194 Mölnlycke Zinc oxide (15%)

Varolasts Hartmann, Heidenheim,

Germany

Zinc oxide (15%)

Methyl and propyl p-hydroxybenzoates

Viscopastes PB7194 Smith & Nephew Zinc oxide (10%)

Cetearyl alcohol, methyl and propyl

p-hydroxybenzoates

Venous leg ulcers195

Zincabands2,193 Mölnlycke Zinc oxide (15%)

Propyl p-hydroxybenzoate

Zipzocs (stocking) Smith & Nephew Zinc oxide (20%) Venous leg ulcers195,196

Other zinc-supplemented dressings

Curasorbs Zn Tyco, Mansfield, MA Zinc-impregnated (0.18%n) calcium alginate

Dermagrans Hydrophilic Dermascience,

Princeton, NJ

Zinc ointment (0.05%n) in nonwoven swab

Zinc-saline formulation in gauze

Chronic skin ulcers of different

etiologies197

Mezincs Abigo Medical,

Askim, Sweden

Zinc oxide (25%) and zinc resinates

in an adhesive mass

Diabetic foot ulcers114

Burns115

Venous and arterial leg ulcers165

Trionics Johnson & Johnson

Wound Management,

Norderstedt, Germany

Zinc (0.03%n), calcium and manganese

supplemented alginate

Medium to heavy exudating

secondary healing wounds198

nDetermined by atomic absorption spectrophotometry129 and given as percentage of elemental zinc per weight dressing material.
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The zinc ion bound to epidermal keratin will be lost as
superficial keratinocytes are shed naturally, whereas a
fraction of zinc penetrating more deeply will be absorbed
into the systemic circulation. Maximal systemic absorp-
tion of zinc was observed within 1 hour after topical ap-
plication of 65Zn-labeled zinc chloride or zinc oxide to
6 cm2 of intact rat skin.217 A similar distribution of ab-
sorbed zinc with the two zinc compounds was observed.217

Studies in rats have shown that hypozincemias evoked by
dietary deprivation can be alleviated by topical application
of zinc compounds.218 Whitehouse et al.219 noted a thera-
peutic effect of dry zinc oxide rubbed into a 6 cm2 area of
rat skin. The organic zinc monoglycerolate complex
permeated skin more efficiently than zinc oxide and its
therapeutic effect was comparable to that of the immuno-
suppressant cyclosporine in an arthritis model in rats.219

The clinical relevance of the transdermal route in relieving
zinc deficiency symptoms is speculative. Neither Derry et
al.220 nor Morgan et al.221 were able to monitor an in-
creased serum zinc level after treating extensive skin areas
with topical zinc oxide in petrolatum.

Without skin barrier, systemic zinc absorption from
topical zinc is substantially increased.217 In patients with
extensive (5–20% of total body surface area) partial-thick-
ness and full-thickness burn wounds, the serum zinc level
increased after treatment with a zinc oxide-medicated ad-
hesive dressing.115,217 In patients with smaller wounds
(10 cm2), no significant difference in serum zinc was ob-
served between the zinc oxide-treated and control-treated
patients.19 An increase in serum zinc can be detected in
zinc oxide-treated rats with wounds accounting for more
than 5% of the total body surface area.131,213,217

CONCLUSIONS

Patients require supplementary oral or topical zinc if nor-
mal wound healing is to occur in the face of a pre-existing
deficiency state.64,158,222 Difficulties arise in the diagnosis
of hypozincemia,33 and serum zinc may not be an accurate
monitor of subnormal zinc. Evidence is presented here to
show that zinc delivered locally provides therapeutic ad-
vantages in treatment of not only zinc-deficient chronic
wounds but also of surgical wounds, including pilonidal
sinus lesions.19 Topical zinc oxide treatment increases local
bioavailable zinc concentrations to fairly constant levels of
1,000–3,000mmol/L.19,131,180 These zinc ion levels are
atoxic132 and protective142,143 to host cells but sufficiently
high to augment antibacterial mechanisms in addition to
MMP-mediated elimination of necrotic tissue112,114,116,164

and facilitation of keratinocyte migration.98,127
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